Characterizing Fuzzy Modal Semantics by Fuzzy Multimodal Systems with Crisp Accessibility Relations

نویسندگان

  • Félix Bou
  • Francesc Esteva
  • Lluis Godo
  • Ricardo Oscar Rodríguez
چکیده

In [1] the authors considered finitely-valued modal logics with Kripke style semantics where both propositions and the accessibility relation are valued over a finite residuated lattice. Unfortunately, the necessity operator does not satisfy in general the normality axiom (K). In this paper we focus on the case of finite chains, and we consider a different approach based on introducing a multimodal logic where the previous necessity operator is replaced with a family, parametrized by truth values different from zero, of necessity operators each one semantically defined using the crisp accessibility relation given by the corresponding cut of the finitely-valued original accessibility relation. This multimodal logic is somehow more appealing than the original modal one because axiom (K) holds for each necessity operator. In this paper we axiomatize this multimodal logic and we prove that, in the case the starting residuated lattice is a finite BL chain, the modal and the multimodal languages have the same expressive power iff this algebra is an MV chain. Keywords— many-valued modal logic, fuzzy modal logic, Łukasiewicz modal logic, fuzzy logic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On modal extensions of Product fuzzy logic

In this paper we study modal extensions of Product fuzzy logic with both relational semantics based on Kripke structures with crisp accessibility relations and algebraic semantics, when the underlying product fuzzy logic is expanded with truth-constants, the ∆ operator and with two infinitary inference rules. We provide completeness results for both kinds of semantics. Finally, we also consider...

متن کامل

T-norm-based Fuzzy Logics and Logics for Human Reasoning

In [1] the authors considered finitely-valued modal logics with Kripke style semantics where both propositions and the accessibility relation are valued over a finite residuated lattice. Unfortunately, the necessity operator does not satisfy in general the normality axiom (K). In this paper we focus on the case of finite chains, and we consider a different approach based on introducing a multim...

متن کامل

Standard Gödel Modal Logics

We prove strong completeness of the -version and the 3-version of a Gödel modal logic based on Kripke models where propositions at each world and the accessibility relation are both in…nitely valued in the standard Gödel algebra [0,1]. Some asymmetries are revealed: validity in the …rst logic is reducible to the class of frames having twovalued accessibility relation and this logic does not enj...

متن کامل

On Modal Expansions of Left-continuous T-norm Logics

Modal fuzzy logics is a research topic that has attracted increasing attention in the last years. Several papers have been published treating different aspects, see for instance [6] for a modal expansion of Lukasiewicz logic, [3, 4, 2] for modal expansions of Gödel fuzzy logic, [1] for modal logics over finite residuated lattices, and more recently [7] for a modal expansion of Product fuzzy log...

متن کامل

Cutlike semantics for fuzzy logic and its applications

Each fuzzy set can be represented by a nested system of ordinary sets—its a-cuts. There is an extensive literature on fuzzy sets devoted to problems of the following kind: is it possible to reduce operations with fuzzy sets to operations with their a-cuts? Is it possible to reduce properties of fuzzy relations to properties of their a-cuts? More generally, can a fuzzy concept be represented by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009